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Phagosomes are highly dynamic organelles formed by the

uptake of particles through phagocytic innate immune cells

such as macrophages. Their key roles in microbe elimination

and antigen presentation make them essential for innate and

adaptive immunity. However, phagosomes are also important

for tissue homeostasis as even in healthy individuals billions of

dead cells are phagocytosed each day. In this short review, we

highlight how the use of latex beads as inert baits for

phagocytosis and subsequent analysis by proteomics has

changed our understanding of the phagosome. We further

discuss recent data on post-translational modifications such as

phosphorylation and ubiquitylation that regulate phagosome

functions and demonstrate that the phagosome is not only a

‘degradative organelle’ but also serves as a subcellular

signalling platform.
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Introduction
Phagocytosis is an evolutionary conserved process [1��,2]
that enables cells to engulf and digest a variety of differ-

ent particles. It serves as a vital source of nutrition in

unicellular eukaryotes, but is also important for tissue

remodelling [3] and innate immune defence in higher

organisms [3]. Phagocytosis leads to the formation of a

membranous vesicle called a phagosome that is formed

within cells following engulfment of particles typically

greater than 0.5 mm [4]. In animals, this process enables

elimination of foreign bodies such as bacteria from infec-

tion sites. Phagocytosis also facilitates the removal and

recycling of cellular debris, and clears the billions of

apoptotic cells that are generated each day [4].
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Phagosomes are key organelles for the presentation of

antigens via MHC Class I (for antigen cross-presentation)

and MHC Class II pathways, thereby linking innate and

adaptive immunity (see Refs. [5,6] for review). Unsur-

prisingly, defects in phagocytosis and the phagosomal

maturation pathway lead to several immune-related

human diseases [4,7] highlighting its importance. More-

over, the phagosome or phagosome-related vacuoles are

the intracellular niche for a number of important human

pathogens such as Mycobacterium tuberculosis, Legionella,

Brucella, Francisella and Leishmania [8]. Yet, relatively

little is known about the molecular events that underlie

the regulation of phagosome formation and maturation as

recent data points to a highly sophisticated organelle, well

beyond its traditional role in waste removal.

Phagosome formation begins with the recognition of a

target ligand at the cell surface by a range of dedicated

phagocytic receptors that include Scavenger and Fc-

receptors and many others (for review see Refs. [4,9]).

Receptor binding initiates signalling cascades that result

in cytoskeletal remodelling and membrane protrusion

around the particle [4], ultimately leading to membrane

scission and the formation of an early phagosome [10,11].

The nascent phagosome then follows a choreographed

pathway termed ‘phagosome maturation’ [9,12], whereby

its proteome and physico-chemical properties dramati-

cally change, driven by fission-fusion events with intra-

cellular vesicles and organelles such as early and late

endosomes, the ER and finally lysosomes

[9,13,14��,15�]. Following the final fusion with lysosomes,

the lumen of mature phagolysosome acquires a low pH,

features a highly oxidative environment and contains

many hydrolytic enzymes including proteases, DNAses,

lipases and glycosidases, that all function at low pH and

lead to the destruction of the internalised particle [12]

(see Figure 1).

Phagosomes share most, if not all of the molecular

machinery of the endocytic and autophagy pathways,

such as the phosphatidylinositol-phosphate (PI3P) kinase

complexes and Rab family GTPases that mediate vesicle

trafficking to the lysosome [16]. As phagosomes can easily

be isolated to high purity, unlike endosomes and autop-

hagosomes, they represent an excellent model to study

vesicular trafficking to the lysosome.

Phagosome proteomics and latex beads
Phagosomes can be isolated using several techniques

including density gradient centrifugation [17] or affinity
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The virtual phagosome. The phagosome has well established ‘traditional’ functions in acidification, degradation of exogenous particles, transport/

recycling of building blocks and antigen presentation. Many of these functions and additional functions such as innate immune recognition and

cell signalling are regulated through post-translational modifications of phagosomal proteins.
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purification with magnetic beads [18–20] or biotin affinity

purification [21,22]. However, the utilisation of latex or

polystyrene beads, in conjunction with density gradient

centrifugation, has revolutionised phagosome proteomics

because of the exceptional high purity of phagosomes

produced by this method (over 95% pure phagosomes

[23��]). Phagocytic cells such as macrophages, efficiently

phagocytose these beads, forming latex bead phagosomes

(LBP) which can be separated from other cellular com-

partments by sucrose gradient centrifugation due to their

low buoyant density (Figure 2a). Using cell cultured

macrophages, relatively large amounts, that is hundreds

of micrograms, of phagosome protein extracts can be

obtained [23��,24]. Unfortunately, while bacteria-con-

taining phagosomes have more in vivo relevance, they

are much more difficult to purify as they have a density

similar to that of other organelles such as mitochondria

[25,26], and greater caution is needed when interpreting

data using these phagosomes. While latex beads are non-

biological, they can be coated with individual molecules

to stimulate specific pathways, such as antibodies to

trigger Fc-receptors, phosphatidylserine to trigger

TAM receptors or bacterial lipopolysaccharide (LPS) to

activate Toll-like Receptor 4 [27]. Importantly, LBP

maturation dynamics are similar to that seen with bacte-

ria, so they represent a good reductionist approach to

study phagosome cell biology by biochemical methods

and proteomics.

Advances in mass spectrometry (MS)-based proteomics

over the past 25 years have seen a dramatic increase in the

number of identified proteins on latex bead phagosomes

[14��,17,23��,27,28�,29–31,32�,33��,34,35,36�]
(Figure 2b). This sensitivity recently allowed for the

identification of 2000–4000 proteins on phagosomes as

well as post-translational modifications such as phosphor-

ylation and ubiquitylation [23��,37]. The notion of the

phagosome as a signalling hub, supported by recent data

[9,23��,33��], implies that post-translational modifications

play an important role in regulating phagosome functions.

Here, we focus on enzymes in the protein phosphoryla-

tion and ubiquitylation space. These enzymes are con-

sidered to be well druggable [38–40] and good high-

throughput screening and chemical biology tools exist

[41–44]. This would allow for host-directed approaches

for targeting diseases associated with dysregulated pha-

gosome functions.

The phagosome and post-translational
modifications
The idea of the phagosome as a molecular signalling

platform is supported by proteomic data

[9,23��,27,33��,34], which shows that the phagosomal

proteome contains many enzymes that introduce post-

translational modifications (PTMs) on other proteins

(Figure 3). PTMs play important regulatory roles in

biological processes, influencing a protein function’s,
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stability, and localisation and increase the overall chemi-

cal diversity of the proteome. PTMs refer to the covalent

attachment of chemical groups (phosphorylation, acety-

lation, methylation, nitrosylation, sulfation), more com-

plex chemical structures (glycosylation, prenylation,

AMPylation, ADP-ribosylation) and even small proteins

(ubiquitylation and ubiquitin-like modifiers). Addition-

ally, amino acid modification (deamidation, eliminyla-

tion) and proteolytic cleavage can influence protein activ-

ity. Given that PTMs play important roles in vesicle

trafficking [45–47], it would not be surprising that they

are important for phagosome biology.

Phosphorylation of phagosomal proteins
Phosphorylation is the reversible addition of a phosphate

group on target proteins by protein kinases that generally

act on the hydroxyl groups of serine, threonine, or tyrosine

residues, although recently it was shown that other amino

acids can also be phosphorylated [48]. Early pioneering

work revealed the presence of tyrosine phosphorylation

on phagosome-associated proteins, and variation in pro-

tein phosphorylation patterns has been observed during

different stages of phagosome maturation [49]. Organelle-

wide protein phosphorylation was highlighted by the first

global analysis of phosphorylation on phagosome proteins

using quantitative phosphoproteomics, which identified

almost 3000 phosphorylation sites [23��]. This study

revealed significant changes in the phosphorylation state

of phagosomal proteins upon stimulation with the proin-

flammatory cytokine interferon-g (IFN-g) [23��] that

increases the antibacterial activity of the cell. Many core

phagosomal proteins were shown to be phosphorylated

upon IFN-g treatment including those involved in anti-

bacterial activity such as NOS and v-ATPase, as well as

membrane trafficking and cytoskeletal proteins [23��]. In

the same study, over 100 kinases and phosphatases were

also found on the phagosome, many of which were

modulated by IFN-g [23��]. A subsequent study [1��],
comparing unicellular and multi-cellular organisms, also

showed that while the phagosome has retained a core set

of proteins during evolution, the level of phosphorylated

proteins has dramatically increased, probably in line with

increasing cellular complexity and the additional role of

the phagosome in immunity [1��]. The functions of

phosphorylation targets on the phagosome are wide-

spread and cover most of its known functions including

signalling, vesicle trafficking, cytoskeletal functions and

transport across membranes [1��,23��].

Recent work by the Gutierrez and our own lab showed

that the Parkinson’s kinase LRRK2 was a negative regu-

lator of phagosome maturation by regulating phosphati-

dylinositol 3-phosphate (PI3P) kinase complex around

VPS34 [33��]. Pharmacological inhibition of LRRK2

kinase activity increased phagosome-lysosome fusion

and thereby promoted killing of intracellular M.
tuberculosis. Since highly selective LRRK2 inhibitors
Current Opinion in Chemical Biology 2019, 48:73–80
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Figure 2
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Phagosome isolation and a short history of phagosome proteomics. (a) Phagocytosis is induced by presenting latex beads to macrophages which

are internalised into phagosomes. Latex bead phagosomes (LBP) are isolated by placing the post-nuclear supernatant of the cell lysate onto the

bottom of a sucrose gradient. LBPs float in this gradient upon ultracentrifugation and can be isolated to high purity. Phagosomal proteins are then

extracted and digested by trypsin. Peptides are analysed by LC–MS/MS. (b) A short history of key phagosome proteomics papers [13,16,20–

22,23��,24–27,28�,29,30].
are available, these could serve as a host-directed strategy

to help fighting intracellular pathogens. Moreover, in

many neurodegenerative diseases, unfolded proteins

are accumulating and are not properly degraded through

the lysosomal pathway. LRRK2 inhibition might possibly

enhance the capacity of cells to process cellular waste.

Considering the important role of phosphorylation in

regulating cellular processes, it is not surprising that

intracellular pathogens exploit this for their advantage.

M. tuberculosis secretes a eukaryotic-like serine/threonine

protein kinase G that has been shown to be important for

blocking phagosome-lysosome fusion [50�]. Moreover,

the M. tuberculosis secreted protein tyrosine phosphatase,
Current Opinion in Chemical Biology 2019, 48:73–80 
PtpA, has been shown to dephosphorylate human vacuo-

lar protein sorting 33B (VPS33B) to also inhibit phago-

some-lysosome fusion [51] via exclusion of V-ATPase

[52]. These examples clearly implicate an important role

for protein phosphorylation in phagosome maturation,

especially in mycobacteria-containing phagosomes.

Ubiquitylation of phagosomal proteins
Modification of cellular proteins by the covalent attach-

ment of the 76-amino acid protein ubiquitin (Ub) is one of

the most elaborate post-translational modifications in

eukaryotic cells. It involves the concerted activities of

three sequential enzymes (E): first, using ATP the Ub-

activating E1 enzyme is ‘charged’ with Ub, which is then
www.sciencedirect.com
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Figure 3
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Post-translational modification machinery present on the phagosome. Phagosomes are rich in enzymes regulating various cellular processes by

post-translational modifications, including protein kinases, lipid transferases, acetyl transferases, methyl transferases, glycosyltransferases,

proteases, ubiquitin and SUMO ligases. Specific examples are given in pink.
transferred to an Ub-conjugating E2 enzyme and finally

the C-terminus of Ub is covalently attached to the

e-amino group of a lysine residue on target protein by

an E3 Ub ligase, which determines the substrate speci-

ficity [44]. In humans, there are only two E1 enzymes,

Uba1 and Uba6 while other members of the Uba family

are involved in attachment of ubiquitin-like modifiers

such as SUMO, NEDD8 and ISG15 [53]. There are tens

of E2 and hundreds of E3 enzymes encoded in the human

genome, which also contains a large number of deubi-

quitylases known as DUBs that reverse the ubiquitylation

reaction [44,54–56]. As ubiquitin itself can be ubiquity-

lated on any of its seven lysines (K6, K11, K27, K29, K33,

K48, and K63) and the N-terminal methionine (M1), a

complex variety of ubiquitin chain types can be produced

on target proteins, that can determine the fate of the

protein. For example, K63-linked chain types are often

involved in signalling whereas K48 chains target proteins
www.sciencedirect.com 
for proteasomal destruction [54,55]. Many ubiquitin-like

proteins, including SUMO, NEDD8 and ISG15 have

been identified on phagosomes and it is likely that they

will also play an important role in regulating phagosome

functions.

Both mono-ubiquitylated and poly-ubiquitylated pro-

teins have also been found on phagosomes [57]. Ubiqui-

tylated proteins have been shown to be important in

membrane trafficking [46,58], for example regulation of

the PI3P kinase complex VPS34 [59]. Ubiquitylation was

shown to affect Fc-receptor sorting on phagosomes [57],

which may be linked to an overall role of ubiquitylation in

receptor sorting [60]. A phagosome-associated E3 ubiqui-

tin ligase, NKLAM, was shown to be enriched on phago-

somes with elevated levels of ubiquitylated phagosome-

associated proteins [61]. NKLAM was not essential for

phagocytosis and knock-out of NKLAM led to reduced
Current Opinion in Chemical Biology 2019, 48:73–80
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inflammation and cytokine levels upon infection with

Streptococcus pneumoniae [62]. Recent MS-based

approaches have clearly shown the presence of a large

contingent of ubiquitin-conjugation machinery on the

phagosome [34] including E1, E2 and E3 enzymes and

also deubiquitylases. While some of these proteins are

relatively unknown, other phagosomal proteins such as

MGRN1, CBL and ITCH are known to play important

roles in endocytic trafficking [45].

The importance of ubiquitylation on the phagosome is

demonstrated by bacterial pathogens specifically target-

ing this PTM during infection. Legionella pneumophila
recruits polyubiquitin conjugates around the bacterial

phagosome [63,64] that was shown to be dependent on

the E3 ligase activity of a bacterial effector SidC [65�] that

is translocated into host cells. The SidC ubiquitin ligase

activity was also shown to be crucial for the recruitment of

ER components to the bacterial phagosome [65�]. This

highly significant study nicely demonstrates that ubiqui-

tylation of phagosome proteins likely plays a crucial role

in phagosome functions, but more work is required to

decipher the exact role that ubiquitylation plays on the

phagosome.

Conclusion
Post-translational modifications undoubtedly play a cru-

cial role in phagosome biology. Yet, we have only just

begun to scratch the surface of their importance along the

phagosome maturation pathway. High-resolution mass

spectrometry-based proteomics is integral to this discov-

ery, and is uncovering the enormous complexity of the

phagosomal proteome but also the diversity of phagoso-

mal PTMs that allows the phagosome to react to ever

changing stimuli and target cargo. The identification of

specific enzymes on the phagosome that mediate protein

phosphorylation and ubiquitylation indicate a proposed

organelle-level control of signal transduction. It is thus

tempting to speculate that the phagosome plays a role in

initiating signal transduction, turning this ‘degradative

organelle’ into a subcellular signalling platform.
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